NCSS Challenge with a twist

I mentioned in my previous blog post (April 2020) the intent to share more resources to help computing teachers challenged with the uncertainties brought by the COVID-19 pandemic. Months later, the uncertainties are still there and I have yet to share more resources!

One day I’ll share my year 10 Data Science project and year 11 Software project. What I’d like to share now is my year 10 coding project because it incorporates Grok Learning’s NCSS Challenge. I’ve been using the challenge for years and always as part of an assessment. Nowadays, teachers can even claim participation as accredited training. That means doing the NCSS Challenge in Term 3 is accredited PD, covers teaching/learning/assessment of software programming unit (IST) with 24/7 tech support, and good for face-to-face as well as off-campus scenarios. That’s a WIN-WIN-WIN-WIN !

Here’s what I’ll be doing with year 10s.

 

Computational thinking is an approach to solving problems: designing solutions or algorithms that can be implemented using code. Are you good at understanding problems and creating logical solutions? Can you automate solutions by writing code?

Task:

Technical skills in focus for this task are algorithm design and representation, error correction, as well as coding solutions. The twist is that you will code and evaluate someone else’s design.

 

Part A – NCSS Challenge

NCSS Challenge begins on Monday 27 July 2020. You can choose either the Intermediate or Advanced stream. Completing the challenge constitutes training for algorithm design and coding. Completion rate will be marked accordingly.

The first three weeks of NCSS challenge will be used to practice for Part B of this task. That is, before our third lesson of the week, you must share to the class pool at least one of your algorithms for an NCSS Challenge problem that week. Algorithms should be desk-checked and represented either as pseudocode or flowchart. It should also have a test plan comprising expected output for test cases, including an educated guess of what the hidden test case(s) could be.

On the third lesson of the week, you will choose someone else’s algorithm to write python code for. You will also evaluate the quality of their solution design and test plan.

Timeliness and completeness of submissions will be marked. Quality of submissions will not be marked as you refine assessable skills. Use every opportunity for formative feedback to do well in Part B.

Part B – Algorithm design and coding challenge

  1. On 17 August 2020 (week 4 of NCSS Challenge), you will be given a list of Problems with 3 levels of difficulty to choose from. Choose one problem to design an algorithm for.
    1. Represent your algorithm as pseudocode AND flowchart
    2. Create a test plan with test cases and expected output
    3. Desk-check your algorithm
    4. Submit in Canvas Class Tasks designed solution by Wednesday 26 August 2020

You can submit earlier or do multiple submissions. For example, you may attempt several problems of increasing difficulty as you gain confidence and competence.

  1. From the list of available algorithms other than yours, choose one to code. It can be the same problem you designed for. The teacher will give you the documented design.
  2. Evaluate the design. Was it accurate or did you have to deviate from the documented algorithm to solve the problem? Were all test cases provided? Were the expected output appropriate? Was the desk check accurate? Substantiate your evaluation with specific details.

 

For both design and coding, difficulty level impacts marks. You may choose different levels for design and development, e.g. if you are more confident designing algorithms versus writing and testing code. Excellent completion of simple problems could still earn an ‘A’.

 

SUBMISSION: 

Weekly Part A submissions will be in our Microsoft Teams site where it is easy to share documents.

Design for Part B should be submitted in Canvas Class Tasks by 26 August 2020.

Submit the following Part B components to Canvas Assessments for marking:

  1. Algorithm solution and test plan
  2. Python code
  3. Evaluation of algorithm solution

 If you attempted several levels, please submit the highest level completed.

 

I’m still wondering what to do with year 9s but it will also involve NCSS Challenge. I really liked what I did last year which culminated in a feature post on Grok Learning blog (!!!!!). I have keen coders in this cohort so it’ll be a different experience again.

For more on how I use NCSS Challenge, check this post. Or you could always contact me here or on Twitter if you’d like to discuss further. I’d love that!

How I teach computing with Grok Learning + ACA and python (mostly)

It’s no secret that I’m a huge fan of Grok Learning; it’s great that the Australian Computing Academy (ACA) is also using Grok as a platform to deliver some of their resources. My students have even asked me if I’m on Grok’s payroll 😀 (I’m not). This post aims to highlight how I use Grok in curricular and extra-curricular settings.

9 and 10 IST (Information and Software Technology)

NCSS Challenge – python + Intro to programming courses

I’ve been using NCSS Challenge since 2013 to teach the Software development and programming option. This python programming challenge runs in Term 3 (like, right now!) and goes for 5 weeks.

When I introduced this annual challenge to IST in 2013, I embedded it into the teaching and assessment program. In a nutshell, I allocated lesson times to complete the challenge and discuss syllabus topics. The associated assessment typically included engagement and achievement on the challenge and then application and/or reflection piece. The range of ability streams within the challenge facilitated differentiation. As students work independently, I monitor and track their progress such that when a student stays too long at a particular problem, I go over and offer to help. When there are 3 or more stuck, I hold a small-group teaching session. I get them to help those who need help later and I listen just in case.

Generally, I get students to do both Beginners and Intermediate streams in the first two weeks. By this time, students and I know which stream best suits their ability…as I kept saying, ‘Easy is boring.’ Occasionally, I got students to also attempt Advanced. So far, I’ve only had one student complete Advanced and that was last year.

This year, colleagues (yes, I have colleagues which is highly unusual for a computing teacher!!) and I agreed to exclude challenge achievement in the assessment. Assessments will instead look at application of what they learned through a coding project, reflection piece, and some problem-solving activities…on paper. I’m quite excited about this change. The Advanced stream this year is VERY different focusing on learning some AI concepts creating a card-playing bot. I hope to get ’round to sharing how I enthused students on another post (yeah, right).

Before or after the challenge, as well as during the challenge for early finishers, I get students to go through the Intro to Programming courses. Sure there’s repetition of concepts but that’s a good thing. The problems are different so students get to do more practice problem-solving with code.

web comp – html/css + new JS courses

Web comp runs at the start of the year. It’s a good way to learn web design as part of the internet and website development option topic. We’ve been using this for 2 years now and each time, the comp served as a platform for learning consequently applied in an assessment task… you guessed it – a website. The task was a ‘choose your problem to solve’ project which involved algorithm design (another story and resource worth sharing in its own right…eventually).

This year, I have some really keen programmers and I told them they could use JavaScript to enhance their sites. My students were clamoring for a JS tutorial in Grok…alas, it didn’t come till after the fact.

Anyway, after the task, I stumbled through teaching basic JS (I’m a beginner learning with the kids)! It’s like ‘where do you start teaching PhotoShop‘, right? I decided to set some JS programming challenges (thank you 101computing.net – this book is gold – no, it’s not Grok) because some kids can fly and they do. At some point, ACA released via Grok their Cookie Clicker JS course which I personally found helpful and really went a long way to help those who struggled to make sense of other online tutorials. Admittedly biased, there is a reason why my students and I love courses in Grok – the scope and sequence, language, pace, challenges, and whole delivery are very good. I’ve yet to check out the space invaders JS course by ACA, also in Grok.

SDD(Software Design AND Development)

I get students to complete Intro to Programming, and preferably also course 2. My main focus here is to strengthen their computational thinking as well as exposure to a range of problems that can be solved with code. There are risks as there are discrepancies between their programming experience and the syllabus. To name a few:

  • fixed length arrays
  • python has no built-in post-test repetition -> though conversion from pre to post is a good skill
  • python multiway selection means students often use ELIF in their pseudocode
  • array indices could start from one (1) in the syllabus, not the usual zero
  • dictionaries are not part of the syllabus

I’m like a broken record on discrepancies. On a good day, it means good discussions on evolution of hardware and software which are also syllabus content. On a bad day, we all just feel the syllabus needs updating (which, by the way, is in the works).

I love how python is easy to learn and has much to offer – or as we say in schools: low-floor/high-ceiling. I use it to demonstrate a lot of SDD concepts including precision in floating points (a series of division by 3s), boolean algebra, ASCII (ord and char), data types, control structures, standard algorithms.

During the NCSS Challenge, I allocate at least one lesson a week for students to participate. It’s a great opportunity to live and talk about the syllabus, i.e. error detection techniques, maintainability of code, internal and intrinsic documentation, test plans (what do you think the hidden test case is?). Fabulous!

extra-curricular

Grok has free courses, several thanks to ACA. Currently, we have a school subscription so everyone has access to all courses and comps. When we started the coding club, we got students to do the Intro to Programming courses. If a student is referred to me needing extension, I get them to Grok so I see how they think.

It would be nice to see coding as part of other curricular and extra-curricular activities. The above is what I’ve used it for.

 

Hmm, the above seems a bit broad-brush but I thought I’d just capture some thoughts and it’s been so long since I blogged I needed to start somewhere. Maybe I’ll add more in the future.

If you’ve come this far reading this, perhaps you care to comment and add ideas (please do, thanks).

Post has been updated 14Aug  to correctly attribute JS courses to ACA.

 

PBL to learn JavaScript

I’ve been meaning to learn JavaScript but always fall flat largely due to the good ol’ lack of time. Really though, I think it’s because learning a new programming language is overwhelming – there’s so much to learn and some resources can even make pros like Brad Post feel like an idiot. And yet, I normally send off my computing students to do tutorials. The irony!

Anyway, I decided that the best way for ME to learn JS is to force me to dive right in with a project. Not totally for selfish reasons, actually, as I think my students would benefit from learning it too. Many of my year 11 Software (SDD) students can program in python (thank you Grok Learning) and a few can do java (thank you FRC). While many can also write HTML/CSS (thank you again Grok Learning), none would own up to knowing JavasScript. We could all be beginners!!

So I launched a PBL with the driving question “Can we do better than the textbook?” (There are several PBL models but I love, love, love the Hewes’ version – check it out). My students and I will learn JS and SDD topics to create a website with topic pages and interactive review pages. There will be only one site for the two classes so the product – and code libraries – will be shared. Additionally, this PBL helps exercise effective learning strategies (The Learning Scientists), e.g. elaboration, concrete examples and dual coding for creating the topic pages and retrieval practice, interleaving, and spaced practice for completing the quizzes.

The plan is to learn/discover, create and share with purpose.

Model the system

Because the site is a software system in its own right, I modeled it using the systems modeling tools in the SDD syllabus. I believe modeling is a good teaching technique and certainly good experience for my students to use models generated by others.

Not only would they learn JS, they’re going to live the syllabus in an authentic way. Oh the questions! Rich as…as I showed them the models including the storyboard and structure chart below  (click to enlarge and thank you lucidchart)- these 2 diagrams on a recent assessment task gave many students grief.

Our site would start off with the Hardware and Software topics so I could allocate one each, with one to spare for me. It’s easy for them to research and there’s loads of multimedia resources as well. We have two weeks to do this.

 

Storyboard

Storyboard

Structure Chart

Structure Chart

Model the learning

When I launched this PBL to the class, I also showed my rather ugly login and menu screens – a student quipped, “I can see why you’re a computing teacher and not an art teacher“. Ha! I actually styled it better by next lesson. Also, the pseudo-login (no cookies just parameter passing via JS) did not work which I owned up to as something I was still working on (it sort of works now).

In fact, this was what I planned for students to do, i.e. focus first on their HTML content and then style later, insisting on a separate CSS file. And I also planned to introduce JS once they’ve handed in drafts of their topic pages.

Learning with the kids (Kids are awesome)

I was alone in settling for an ugly page initially because they soon went off playing with their CSS files. They went off exploring various HTML tags and CSS styles in ways I could not have predicted.

  • There’s this super-quiet kid who I gave a shout-out because he was doing gradients and image blurs via CSS (I didn’t know it could!) – while a couple was doing that in PhotoShop (what is it with kids and gradients????). Anyway, that opened the gates for wider sharing in the class…not something I anticipated, silly me.
  • And then there’s this kid who said he had no programming experience and there he was with JS script to load date and time. He wanted them to display on one line  but my CSS inline-block technique suggestion failed. I did know about string concatenation so we solved his problem via JS – will be sharing that with the rest of the class next week…it’s legit syllabus content.
  • There’s another kid who worked pretty quickly so I suggested animated asides. Rather than going for a CSS solution, he’s decided to do it via JS …with image blur to boot, because he’s found out from a peer. I’ll be sharing all that with the rest of the class next week.
  • There’s another kid who insisted on animating a shape so it ‘bounced’ left to right…whatever for, who knows?! This algorithm makes use of flags, functions and several control structures they have to learn – will be sharing that with the rest of the class next week.

In fact, several students have already incorporated JS into their code, problem-solving with me and peers as they went along.  Here I was with my contrived pseudo-login to provide a JS problem to solve yet they were soon busy finding/creating their own problems. I’ve got loads of examples from students now.

So yeah, I was learning with them.

It’s not an assessment

A week in and a week to go, the  task is not over and I’ve only got their draft HTML/CSS – reluctantly submitted as still being rough – or empty (but stylish). I can tell students are engaged. I can tell they’re keen to learn and are learning….together…with me.

This is not an assessment…at least not a formal one. It is a rich source of formative assessment  though, even for me.  Like Bianca Hewes said, PBLs are “a busy, complex, yet organised ecosystem of learning“.

I’m cool with that 🙂

 

Aside: I use my blog for my own reference and to help me remember, I often link to resources used as I’ve blogged them in context. I’m adding here a really useful resource Brad Frost (mentioned above) shared about writing kinder and more helpful technical documentation created by Jennifer Lyn Parsons. This’ll come in handy when we get to that part of the syllabus!

Delta X

I’ve been mulling about what to do with my year 11 software (SDD) students for their 2nd project/assessment task. Apart from the syllabus outcomes, I wanted one of the outcomes to be an appreciation of how technology can be transformative and that they themselves can create such technology.

Enter CS + X, except I inverted it to X + CS. While this may be irrelevant from a maths perspective (commutative property of addition), it captures better my pitch of “what is a problem (X) that can be ameliorated with the addition of computer science (CS) ?” In other words:

X + CS = Δ X

Another outcome I wanted is to highlight the importance of understanding the problem as a premise for designing solutions….way before coding/programming comes into the picture. This gave birth to the focus question for the next project, i.e.

Is your software design worth developing?

When planning out the details of this project-based learning unit, I found the book “Setting the Standard for PBL” invaluable.  In particular, Figure 5.3 (pp  118-119) Project Design: Student Learning Guide (Sample) was incredibly helpful. In a nutshell, here were my steps:

  1. List the outcomes for assessment (based on planned Assessment Grid)
  2. Outline the syllabus content (based on planned Scope & Sequence)
  3. Define the Final Products and marking/weighting
  4. Identify instructional strategies

Here’s what I’ve got (PDF) [embeddoc url=”https://malyn.edublogs.org/files/2016/05/11SDD-Project2-2fb4goq.pdf” download=”all” viewer=”google”]

Here’s a student-friendly version

2016 11SDD Project2

I also created a Project Calendar which will be the basis of my students’ Gannt charts for their own projects.

From here, creating the Assessment notification was fairly straightforward with only the rubric for the Final Products left to define.

As luck would have it, I scored us free entry (thank you Google) into The Sunrise Alpha conference. It will feature successful Australian startup founders. I’m hoping this excursion on Monday will inspire my students to see that they too can be part of this.

I’m also negotiating to have mentors from UNSW School of IT. (I am very lucky!)

Finally, I got several staff members to be part of the panel to whom my students will pitch their ideas. The panel will judge whether or not the problem is worth solving and if the recommended solution is indeed viable and worth developing….fodder for next project 🙂

Of course, this is just the beginning of the story.

Tomorrow, we start in earnest. I’ve told my students about the project and we’ve already started brainstorming about ideas on problems to solve. This will have to be bedded down more when I they meet their teams…tomorrow.

What’s the fuss with coding?

The fuss about coding has grown exponentially in the past year. Having watched this space for years, I’ve certainly noticed the increased interest to expose kids to coding. Industry has been pouring resources into it, with huge initiatives and funding coming from Google, Microsoft and more besides. There is a national curriculum for it and most Australian states have adopted it….not in NSW though, the state where I teach. Media, print and online, regularly features this, too; often, about having a shortage in IT skills.  I can also see the increase in teaching coding in many schools.

Hey, one could almost think teaching and  learning to code is trendy.

But, there is always the niggling question, “Is it for everyone?”

I wonder now whether everything in various school subject curricula was subjected to such scrutiny. And if not, why not?

Is it really for everyone?

Firstly, I’d like to make a distinction between computational thinking (CT) and coding. Google’s resources on CT are quite extensive and accessible. As a problem-solving process, it is easy to see why it could be adapted across all disciplines including humanities. Some could even argue it looks like critical thinking. Can you imagine asking “should we teach critical thinking in school?”

Further, algorithms – or step by step instructions – are present in every subject. Google is right to say it is relevant across all disciplines. Quite often, however, algorithms are taught as given, e.g. using formula. And why not? It is an efficient way of disseminating human knowledge developed over time. Standing on the shoulders of giants, so to speak.

Algorithms in the CT sense is less prescriptive. Creative thinking could be incorporated as well.  Can you imagine asking “should we teach creative thinking in school?”

I heard Dr James Curran refer to CT as a process for answering “What can we automate?”  I think this really promotes a mindset leaning towards efficiency as well as innovation, a premise that things could be better and we can use digital technologies to actually make it happen….and scale it, relatively quickly and cheaply. That’s incredibly empowering!  But, it’s the sort of thing that is best experienced vs merely talked about. This echoes elements of design thinking. Can you imagine asking “should we teach design thinking in school?”

Big jump there, i.e. I joined CT with coding – using digital technologies, software programming in particular, to create solutions.;  automation via giving computers detailed instruction.

Algorithms can be viewed as just an idea. It can be represented in many ways. As a teacher, making thinking visible – i.e. ascertain students are learning – is a challenge.  In Information Software & Technologies (IST), one of the subjects I teach, algorithms can be presented as pseudocode and flowcharts.

What of coding then?

Coding can actually help refine algorithms. Sometimes this is done via affordances of programming languages such as more sophisticated built-in functions and data structures.  Often, the refinements are done as one delves deeper into solving the problem and one thinks of more possibilities or cases or scenarios.

In a nutshell, CT promotes development of algorithms and with coding, it is made visible and refined.

Is it for everyone?

I am biased and I think everyone should experience what CT and coding are like. In the same way that I think everyone should experience what creative thinking, critical thinking, design thinking – and way many more ways of thinking like systems thinking, mathematical thinking, etc (see what it’s like in schools now?).  For me, it’s beyond being trendy or shortages in skills or future job opportunities or anything like that or being great at it or even being interested in it. How do you know unless you try?

If you’re a teacher, student, parent or really anyone just wondering what the fuss is about, it’s best to experience it.  Have a go. There are lots of resources out there. One of my favourites is the NCSS Challenge – and we’re a week in.  🙂

Here are some for starters:

Feel free to add your thoughts and resources in the comments below. Thanks.